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Einst eh-Maxwell solitons 

G Neugebauer and D Kramer 
Sektion Physik, Friedrich-Schiller-Universitat Jena, Max-Wien-Platz 1, DDR-6900 Jena, 
GDR 

Received 15 December 1982 

Abstract, The application of the inverse scattering method to the Einstein-Maxwell 
equations for stationary axisymmetric exterior fields leads us to an explicit formula for 
the Ernst and electromagnetic potentials of new exact solutions generated from an arbitrary 
seed solution. 

1. Introduction 

Using the Wahlquist-Estabrook method we derived linear eigenvalue equations for 
pseudopotentials (Kramer and Neugebauer 198 1). The Einstein-Maxwell equations 
for stationary axisymmetric exterior fields are just the integrability conditions of these 
linear equations which were shown to be equivalent to other pseudopotential 
definitions given in the literature (Kramer 1982). From his form of the linear eigen- 
value equations Aleksejev (1980) constructed N-soliton solutions superimposed on 
any known initial solution. Cosgrove (1981) obtained an equivalent result for N = 1, 
using the Hauser-Ernst (1980) formulation. 

In this paper we will show how to obtain, in our approach, explicit expressions 
for the Ernst and electromagnetic potentials of N-soliton solutions on an arbitrary 
background. 

2. The linear equations 

In terms of the Ernst potential 8 and the complex electromagnetic potential @, the 
Einstein-Maxwell equations for stationary axisymmetric fields read (Ernst 1968) 

f A 8  = ( V 8  +26V@)V8, 

fA@ = ( V 8  + 26V@)V@, 
f = R e 8 + 6 @ .  

(A bar denotes complex conjugation.) This simultaneous system of second-order 
nonlinear partial differential equations is equivalent to the integrability condition of 
the linear eigenvalue equations 

(2a)  
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B2 0 E2 

-Fz 0 i(Az+Bz) 
0 +$ E 2  :, -$2] a, (2b) 

where the 3 x 3 pseudopotential matrix R = R(A, z ,  f )  is normalised according to 

at A = 1. Since we will investigate the behaviour of R(A, z ,  f) in the complex A-plane, 
we introduce the notation R(A) = R(A, t ,  2 ) .  The constant spectral parameter K is 
hidden in A, 

A = ~ ( K ) = [ ( K - i f ) / ( K + i z ) ] ” ~ .  (4) 

B -1 -1 - A1 +2&@,z), 1 - 2f ( 8 . 2  + 2Q6.Z 1, 
The expressions 

E ,  = if-1’2@.2, F, = f = Re 8 +&@, 

for the A-independent quantities A , ,  . . . , F1 (and corresponding expressions for 
Az,  . . . , Fz with f in place of z )  are a consequence of (2) and (3). 

The eigenvalue equations (2) enable us to choose 

det R(A) = det n(1). (5  1 

A2=81, B z = A 1 ,  Fz = -El ,  E2 = -F,. (6 )  

The reality of the Einstein-Maxwell field clearly implies 
- 

It is convenient to introduce the matrix R*, 

R*(A) = n(l/I)’, (7) 
i.e. the Hermitian conjugate of R ( l / i ) .  From (2) it follows that R* satisfies the linear 
equations 

82 0 -P, 0 A, 

E* 0 +(A,+&) -E2 
0 1 + A k z  0- --!z], (8a 1 

-P, 
(86) 

We intend to determine explicitly the pseudopotential matrix R(A 1, in particular for 
the superposition of N solitons and any given solution of the Einstein-Maxwell 
equations (1). From R(1) one immediately obtains the potentials 8 and @, 

E ,  0 +(A,+B, )  

8 = flZl(l), -JZi@ = ~ ~ ~ ( 1 ) .  (9) 

R*( l )vR( l )  = (det R”(1) det R(l))1/3a, 

The matrix n(1) as given in (3) has the following properties: 

(10) 
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77 = diag(1, -1, - l ) ,  

det R*(1) = det R( l ) ,  

0 0 -1 

With the aid of ( 5 )  and the general formula 

Tr(R,,R-') = (In det (13) 

R*(A)qR(A) = (det R*(A) det R(A))''3g, (14) 
det n*(A) = det R(A), (15) 

R(-A) =&R(A)C(K), E = diag(1, -1, l),  (16) 
are consistent with the linear equations (2), (8), and the reality conditions (6). The 
3 x 3 matrix C ( K ) ,  which may depend on the spectral parameter K ,  reflects the gauge 
freedom, see P 5 .  The equations (14), (15) impose the conditions 

(17) 

it can easily be checked that, for all values of A, the relations 

C*uC = (det C* det C)''3u, det C* = det C, 

on C = C ( K ) ,  where C* = C * ( K )  = C(R)=.  

Theorem 1. A 3 x 3 matrix R subject to the conditions 
(a) R,,R-' resp RJ-' are matrix functions linear in A resp A - l ,  i.e. 

fl,,fl-' = a + bA resp fl,,R-'=C+dA-', 

(b) n(-A ) = E a(A)C(K) ,  

(C) 

(4 
R*(A)vR(A) = (det R*(A) det R(A))''3u, 

det R*(A) = det R(A), 

satisfies the linear equations (2) together with (6). 

Proof. The requirement (b) gives rise to the special structures 

resp 
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of the matrices a, c resp 6, d. By means of (13) the reality condition (6 )  can be derived 
from (c) by differentiation. Up to now we have achieved the form 

of the linear matrix equation. Multiplying (20), for A = 1,  by the column vector 

from the right and using the normalisation (e) we infer 

i.e. a l  = Al,  bl  = B1, f l =  F1. The combination of (e) and (c) yields 

(1, l,O)n(l) = (det 0*(1)  det fl(l))1'3(l, 0,O). 

From that relation we find 

i.e..el = E 1 ,  and, together with the remaining condition (d), we obtain gl = ~ ( A I + B ~ ) .  
Hence the conditions (a)-(e) lead us to the correct form of the linear equation (2a) 
for real Einstein-Maxwell fields. The equation (2b) can be derived analogously. 

3. The soliton ansatz 

We will satisfy the requirement (a) in theorem 1 by the special soliton theoretical ansatz 

n = T"0. (24) 

no denotes the pseudopotential matrix associated with the given Einstein-Maxwell 
field we start from. We presume that no obeys the conditions (a)-(e) in theorem 1. 

The transformation matrix T = T(A, z ,  f )  is assumed to be essentially a matrix 
polynomial in A (or A -') of degree n ,  

n 

s =o 
T ( A )  = f ( ~ ,  z ) ( Y ,  + Y ~ A - '  + . . . + Y,,A-") = f ( ~ ,  z )  1 Y , A - ~  

= f ( K , r ) ~ ( A ) = g ( K , z ) ( Y n + Y n - l A + .  * .+YoA") 
n 

r=O 
=g(K,  z )  1 Yn-lAs =g(K,  z ) f (A)  (25) 

with A-independent 3 x 3 matrices Y,, s = 0, 1, . . . , n .  The equivalence of the 
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expansions of T in terms of A and A -' implies 

f ( K ,  2) = (Y ( K ) ( K  -if)"", g (K,z)=a(K)(K+iz)"" ;  (26) 

see equation (4). The constant a(K) can be appropriately chosen such that (i) 
det T(A)  =det  T(1), (ii) the factors f ( K ,  f )  and g(K, 2)  in front of the polynomials 
are equal to 1 at A = 1. From (25) we get 

T*(A) = g(K, z )  f YTA', 
s =o 

where * is to be understood as in (7) and + means Hermitian conjugation. 

Theorem 2. The ansatz (24), (25) ,  with det F(A)#O at A =CO and det f ( A )  # O  at 
A = 0, guarantees the validity of (a) in theorem 1, i.e. R,,R-' resp QiR-' are linear 
functions in A resp A -'. 
Proof. The expression 

is regular everywhere in the finite A-plane, even at the zeros of det F(A) (where the 
Bernoulli-1'Hospital rule applies) and has a simple pole at A = CO provided that 
det ~ ( c o )  # 0. (Note that 

holds.) Hence R,,R-' is a linear function in A. Similarly, R,iRn-' is a linear function 
in A-' .  

Suppose no satisfies the conditions (a)-(e) in theorem 1. Then the new R obeys 
these conditions as well if the transformation matrix T in (24) is restricted by the 
following requirements: 

(a') T(A)  has the polynomial form (25), 

(b') T(-A)  = ET(A)E, 

(C') T*(A)qT(A) = (det T*(A) det T(A))"3q, 

(d') det T*(A) =det  T(A),  

The ansatz (b') is chosen such that, for R and Ro, the same matrix C ( K )  occurs in (16). 
In order to determine T from (a')-(e'), we have to draw some conclusions from 

these conditions. The equation (b') implies that the matrix coefficients Y, of even 
resp odd powers in A have the special structures (18) resp (19). The vanishing of 
many elements of T facilitates the further calculations. Moreover, we conclude from 
(b') that the degree n of the polynomial in (25) is necessarily even, n = 2N. Substituting 
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(25) and (27) into (c‘), the factor f ( K ,  f ) g ( K ,  z )  drops out and the special A-depen- 
dence of f means that 

113 

(det f * ( A )  det f ( A ) ) ’ I 3 - (  k = l  E ( A 2 - A : ) ( A 2 - i i 2 ) )  , (34) 

where the Ak’s are determined by 

det i ; ( h k )  = 0,  A k  = A ( & ) ,  K k  = constant, k = 1 , .  . . , 3 N ,  (35) 

by 
must be a polynomial in A. From this observation we infer that the zeros A k  are related 

A 3 m  = A 3 m - 2 ,  A 3 m - 1 =  1 / i 3 m ,  m = 1,.  . . , N ;  (36) 

A 3 = A l ,  A 2 =  1 / A 1 .  (37) 

in particular, for N = 1, 

(The occurrence of triple zeros, A = A z  = A 3 ,  turns out to be a particular case of (37).) 
In terms of the quantity 

@ A )  = f - ’ ( ~ ,  ~ ) o ( A )  = F(A)o,,(A), (38) 

equation (35) can be cast into the form 

f i ( A k ) c k  = 0. (39) 

The linear equations (2) tell us that c k  in (39) must be a consrant vector. (The index 
k refers to the corresponding zero A k . )  

If h k  and 1 / i k  are zeros of det ? (A) ,  they are also zeros of det ?*(A).  The condition 
(c’) can be rewritten as 

(40) f(A)qF*(A) = (det ? ( A )  det f * ( A ) ) ” 3 7 7 ,  

and, taken at the zeros of det f ( A ) ,  it reads 

F ( A 3 m - 1 ) q F i ( A 3 m )  = 0, m = 1,. . . , N.  

At the double zeros A 3 , ,  F ( A 3 m )  has the form of a dyadic product of two vectors, 

T a p  (A 3 , )  = $ m a a m p ,  (42) 

and at the simple zeros A 3 , , - 1 ,  it holds that - 
Tae (A 3 m - 1 )  = X m a b m B  + U m a C m p -  (43) 

Equations (41)-(43) lead to orthogonality relations between the vectors a,, b,, c,, 
or, equivalently, between the c k ’ s  in (39), 

(44) C f m - 1 ~ ~ 3 m  = O = C i m - I ~ C 3 m - 2 ,  

c;ac1= 0 = c ; u c 3 .  

m = I , .  . . , N ;  

in particular, for N = 1, 

C 3 m - 2  and C 3 ,  are independent constant vectors which belong to the double zeros 
A 3 ,  = h 3 m - 2 ,  and C 3 m - 1  corresponds to A 3 m - 1 .  

Hence the requirement (c’) imposes the restrictions (36)  on the h k ’ S  and (44) on 
the C k ’ S .  
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The matrices Y, in ( 2 5 )  are completely determined by equations (38), (39) at the 
zeros A k ,  and by the normalisation (33), 

f ( A k ) f l o ( A k ) c k  = 0, k = 1, .  . . ,3N, T ( l )  -1 = -1 , (45) i:i 111 
From this system of linear algebraic equations, the potentials 8 and @ can be easily 
obtained; the result will be given in S: 4. 

It remains to be shown that the conditions (c) and (d) for fl, resp (c') and (d') for 
T, can always be satisfied. 

Theorem 3. Provided that T(A)  satisfies (a') and (b'), the relations 

(a ) (1, l,O)n(l) = (det n*(l) det fl(l))1'3(l, O , O ) ,  (46) 

( Y )  det fl(1) =det  fl*(l), (48) 
imply the conditions (c) and (d) in theorem 1, i.e. 

f l * ( A ) q f l ( A )  = (det f l * ( A )  det R(A))'/3cr, (49) 

det f l * ( A )  = det f l ( A ) .  (50) 

Proof. We use equation ( 5 ) ,  i.e. det O(A) = det fl(1). From (a') and (b') it follows that 
the Hermitian matrix 

(51) 

( 5 2 )  

X = flcr-'fl* = TqT* 
is independent of A and has the structure (18). Because of (a) and ( P )  we have 

(1, 1,O)X -(det fl*(1) det fl(l))1'3(l, - 1 , O )  

and, consequently, 

i.e. (49). 
If fl(1) does not yet obey the conditions ( a ) - ( y )  in theorem 3, we may multiply 

it from the left by a (A-independent) matrix 2 of the structure (18); the five elements 
of 2 can be uniquely determined from (46)-(48). 

X = (det a*(,+) det fl(A))'l3q, 

4. The N-soliton solution 

The soliton ansatz as described in S: 3 leads to the generation of new solutions (8, @) 
from known solutions (go, @o) to the Einstein-Maxwell equations (1). For the calcula- 
tion of 8 and 0 we need only the second row of the matrix fl(l),  cf equation (9). In 
terms of the vector P k ,  with components P k ,  q k ,  rk, defined by 
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with Ck from (39), the second rows of the linear matrix equations (45) read 

Because of (3) and (9) the potentials 8 and @ are determined by 

-$ + fZ1(1) (g+2@5)+ fz2(1)g + f23(1>(-2i6f1/z) = 0,  

CP+ fZ1(1)@- f 2 2 ( 1 ) @ -  f 2 3 ( 1 )  if1/' = 0. 
( 5 5 )  

In the polynomial expansion (25) the A-independent matrices Y, have the special 
structures (18) resp (19), i.e. the (2,l)- and (2,3)-elements resp the (2,2)-elements of 
Y, vanish for even resp odd values of s. Under this condition we obtain from the 
linear algebraic system (54), ( 5 5 )  the final expressions for the new potentials Ea and @, 

(56) 
I: R", R", 1 : :  RN $=I Q R 1  R 2  . . .  R N  w I '  @ =  1 Q R1 R 2  . . .  R N  w I '  1 w w . . .  

$0 U U . . .  
Q R1 R 2  . . .  RN 
1 w w . . .  

where the (3N x 3) matrices Rm, the (3N x 1) matrix Q and the (1 x 3) matrices U, 
V, W are given by 

qlA:m r lAfm- '  [ q1 1 ,  (57) R m = [  ; Zm-1 1 ,  m = l ,  . . . )  N, Q =  
plAfm-' 

P ~ N A  %-' q3NA32" r 3 N A  3 N  q 3 N  

U = (go + i50@o, $0, -2S0fi /*  1, v = (-@o, @o, -if;"), w = (-1, 1,O). 

The A k ' s  are to be prescribed according to (36) and the P k ' s  are subject to the algebraic 
constraints 

D =  

m = 1 , .  . . , N ;  ( 5 8 )  
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From (59) we regain the formula for 8 (Neugebauer 1980) in the vacuum case 
(0 = Q0 = 0) by cancelling the last rows and columns in the numerator and denominator 
determinants. If one starts with flat space-time, 80 = 1, @O = 0, A = constant, rl = r2 = 
0, one obtains from (59), (60) that 8 is a linear function of 0 (with constant coefficients); 
the generation formula yields the Kerr-Newman solution. Unfortunately, the relation 
(37) between the zeros excludes Kerr-Newman black holes; the parameters are 
restricted to the range beyond the extreme case, see also Cosgrove (1981). In this 
sense, the class of genuine Einstein-Maxwell solitons is rather limited as compared 
with the vacuum and electrostatic classes (which allow 2 x 2 matrix eigenvalue 
equations). 

5. The gauge transformations 

The linear equations (2) admit the gauge freedom 

O ' = O G ( K )  

with a constant non-singular matrix G(K). At A = 1, G = G(m)  is restricted by the 
prescribed normalisation (3) of a( 1). The gauge transformations 

O'(1) = O(l)G, G*uG =U, det G = 1, (62) 

which preserve (10) and ( l l ) ,  form the SU(2,l)  invariance group. A subgroup of it 
preserves also (12). However, in general one has to compensate the effect of the 
G-transformation by operating from the left with a (non-constant) matrix H such that 

holds. The soliton solutions in li 4 are given up to SU(2,l) gauge transformations, 
i.e. up to point transformations of the potentials 8 and 0, preserving the form of the 
Einstein-Maxwell equations. 

6. Summary 

The generation of new Einstein-Maxwell fields requires the following steps. 

(2) to obtain the pseudopotential matrix Oo(A) which obeys (3), ( 5 ) ,  (14). 

prescribed. 

are given by (56) ,  (57). 

(i) For a given Einstein-Maxwell field (80, @o) one has to solve the linear equations 

(ii) The zeros A k  satisfying (36) and the constants c k  satisfying (44) are to be 

(iii) The Ernst and electromagnetic potentials of the new Einstein-Maxwell field 
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